ノイキルヒ・内田の定理(ノイキルヒ・うちだのていり)は、代数体に関するすべての問題は、絶対ガロア群に関する問題に還元できることを示している。ユルゲン・ノイキルヒ (1969a, 1969b)は、同じ絶対ガロア群をもつ2つの代数的数体が同型であることを示し、内田興二 (1976)は、代数的数体の自己同型がその絶対ガロア群の外部自己同型に対応するというノイキルヒの予想を証明することによってこれを強化した。 フロリアン・ポップ (1990, 1994)は、素体上で有限に生成される無限体に結果を拡張した。

ノイキルヒ・内田の定理は、遠アーベル幾何学の基本的な結果の1つである。主なテーマは、これらの代数的基本群(Algebraic fundamental group)が十分に非アーベルである場合、幾何オブジェクトのプロパティを代数的基本群のプロパティに減らすことである。

脚注

関連項目

  • 遠アーベル幾何学

参考文献

  • Neukirch, Jürgen (1969), “Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper” (ドイツ語), Inventiones Mathematicae 6: 296-314, doi:10.1007/BF01425420, MR0244211, http://resolver.sub.uni-goettingen.de/purl?PPN356556735_0006 
  • Neukirch, Jürgen (1969), “Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren Erweiterungen” (ドイツ語), Journal für die reine und angewandte Mathematik 238: 135-147, doi:10.1515/crll.1969.238.135, MR0258804, http://resolver.sub.uni-goettingen.de/purl?PPN243919689_0238 
  • Uchida, Kôji (1976), “Isomorphisms of Galois groups.”, J. Math. Soc. Japan 28 (4): 617-620, doi:10.2969/jmsj/02840617, MR0432593 
  • Pop, Florian (1990), “On the Galois theory of function fields of one variable over number fields”, Journal für die reine und angewandte Mathematik 406: 200-218, doi:10.1515/crll.1990.406.200, MR1048241 
  • Pop, Florian (1994), “On Grothendieck's conjecture of birational anabelian geometry”, Annals of Mathematics, 2 139 (1): 145-182, doi:10.2307/2946630, MR1259367 
  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2020). Cohomology of Number Fields (Version 2.3, May 2020). https://www.mathi.uni-heidelberg.de/~schmidt/NSW2e/index.html 

ノイキルヒ観光ガイド~定番人気スポットを参考に自分にピッタリの観光プランを立てよう!|エクスペディア

東京を代表する時計専門店ISHIDA 限定モデル、ノルケイン「インディペンデンス 42mm DLC」着弾! 高級腕時計専門誌クロノス日本版

リヒとノイ その1~5 にわたずみ工房ブログ

中古品【NORQAIN】ノルケイン インディペンデンス 19 オート 世界限定300本

【2016年7月部隊戦】前夜祭、ノイン【ガンダムW Endress Waltz】 ガンダムカードコレクション攻略